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Abstract

Numerical simulations of an ideal model of street canyons with moving objects in the horizontal plane were

conducted. The simulations were based on the unsteady two-dimensional incompressible Navier–Stokes equations,

discretized on an overlapping grid with a numerical scheme that is second-order accurate in both space and time. The

computational domain consists of a rectangular background with eight fixed objects arranged in two parallel columns

representing the street canyon. Four identical objects were put in each column equidistantly. One or two identical

objects were moving along the symmetry line of the computational domain. The objects were either circular or

rectangular with rounded corners in shape. The numerical method was first validated by comparing with existing

experimental and simulation data. A parametric study was carried out to investigate the influence of the characteristic

parameters (such as canyon width, velocity of the moving objects, and separation distance between them) on the wake

of the moving objects.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite significant improvements in fuel and engine technology, vehicular emissions still dominate the present-day

urban environments. In urban environments, especially those areas where population and traffic densities are relatively

high, human exposure to toxic substances emitted from vehicles has increased tremendously in recent decades. This is

often the case near busy traffic lanes in city centers, where urban topography and microclimate may contribute to the

creation of poor natural ventilation, escalating pollution hot spots. High pollution levels have been observed in urban

streets flanked by clusters of buildings on both sides. Within these street canyons, pedestrians, drivers and residents are

likely exposed to pollutant concentrations exceeding current air quality standards.

Dispersion of vehicular exhaust emissions has recently received considerable attention. A number of pollutant

dispersion models have been developed, from Gaussian plume models in 1970s such as CALINE (Beaton et al., 1972)
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and HIWAY (Zimmerman and Thompson, 1975), to differential equation models in 1980s such as ROADWAY

(Eskridge and Thompson, 1982). However, most air dispersion models treat the source of traffic pollutants

as simple line sources of pollutant, which is obviously a major simplification of the actual situation of a

large number of moving point sources. Only a few dispersion models are applicable to urban street environments.

Since the 1990s, computational fluid dynamic (CFD) techniques have been employed increasingly in studying

street canyon flows [see Vardoulakis et al. (2003) for a review]. Theodoridis and Moussiopoulos (2000)

investigated the influence of building density and roof shape on the wind and dispersion characteristics in

an urban area. Xia and Leung (2001a–c) studied the flow-fields in street canyons with different building

configurations, while Liu et al. (2005) computed the air and pollutant exchange rate in street canyons with

different configurations. These studies purely focused on building configuration and its effect on flow

regimes in street canyons, but did not include any ground vehicular sources. It has been acknowledged that the

wakes of ground vehicles have a significant effect on the dispersion of vehicle-emitted pollutants. Baker (2001)

studied the flow velocities and the dispersion of pollutants in the wake of a number of different types of

ground vehicles. But the ground vehicles are not situated in street canyons. Ahmad et al. (2002) conducted

wind tunnel experiments to investigate dispersion of vehicular pollutants under different urban street configura-

tions. There have few numerical studies of pollutant dispersion behavior in vehicle wakes in street canyons. The

complexity of the problem requires a synergistic approach, so that experimental and theoretical results verify

each other.

The present paper simulates the flow-field around moving objects in a street canyon, taking into account

the interaction between the complex flow regime in street canyons and vehicle wakes. Software package Overture

(http://www.llnl.gov/CASC/Overture) is used to solve the Navier–Stokes equations on overlapping grids. The

numerical methodology is first validated in the case of flow past a pair of side-by-side identical circular

cylinders, for which some experimental results are available (Jester and Kallinderis, 2003). Then we consider two-

dimensional flows in a horizontal plane over identical buildings with different configurations. Two sets of

numerical simulations are conducted to get an understanding of the flow structure around moving objects. In the

first case, simulations of a circular object moving between fixed circular objects in the x–y plane is conducted to obtain

the unsteady flow-field around the moving and fixed circular objects. In the second set, the geometry is similar to the

first set, except that rounded-rectangular objects replace the circular ones. The characteristic parameters are the vehicle

speed, the canyon width, and the distance between the moving objects. The effect of these parameters on the street

canyon flow-fields was studied.
2. Computational model and solution technique

2.1. Computational model

The target street canyon was modelled by a rectangular domain with eight fixed circular objects in the horizontal x–y

plane, which were arranged in two parallel arrays aligned with the wind direction, and one or two moving cylinders

along the symmetry line (Fig. 1).

The problem under consideration was a two-dimensional unsteady low-speed flow, and thus governed by the

following dimensionless incompressible Navier–Stokes equations:
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where the velocity components (u, v) were made nondimensional with respect to the inflow velocity, Uo, the Cartesian

coordinates x and y with respect to the characteristic width D of the moving object, the time t with respect to D/Uo, and

pressure, p, with respect to the dynamic head. The nondimensional parameters Re is the Reynolds number defined as

Re ¼ UoD=n, where n denotes the kinematic viscosity.

http://www.llnl.gov/CASC/Overture
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Fig. 1. Computational domain and terms used in present simulations.
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For convenience of numerical implementation, the incompressible Navier–Stokes equations are expressed in

pressure-Poisson system in vector form as follows:

ut þ ðu � rÞuþ rp� nDu� f ¼ 0, (2a)

Dpþ r � ½ðu � rÞu� � Cdr � u�r � f ¼ 0. (2b)

The form of the divergence damping term Cdr � u appearing in the equation for the pressure will be discussed in next

section.

2.2. Boundary conditions

A parabolic velocity profile was set at the upstream boundary of the rectangular computational domain with

maximum velocity Uo at the symmetric line and zero at the boundary. The downstream boundary was set as outflow,

where the velocity was quadratically extrapolated and a mixed derivative of p, i.e. 0:1pþ qnp ¼ 0; was used in the

present study. Nonslip conditions are applied on the sidewalls of the computational domain and the surface of objects.
3. Solution technique

Details of the numerical algorithm for the solution of incompressible Navier–Stokes equations on overlapping grids

can be found in Henshaw (1994). For the sake of completeness, we provide here a brief description of the numerical

algorithm.
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3.1. The overlapping grid

The basic idea of the overlapping-grid technique is to partition the domain into a number of topologically simple

distinct components, so that grids can then be generated independently for each component and the relevant equations

discretized efficiently and accurately thereon. The overlap must be sufficiently large and the mesh scales of the

overlapping grids consistent so that accurate interpolation between the two grids can be performed. Fig. 2 shows a

simple overlapping grid consisting of two component grids, an annular body grid (GB) and a primary Cartesian grid

(GP). The primary domain is covered by the Cartesian grid GP and the domain close to the solid body is covered by

the curvilinear grid GB, which consists of the body surface (physical boundary), the interpolation boundary, and the

periodic boundary. The interpolation boundary is located at an approximately constant distance from the body, and the

periodic boundary is located between the rightmost points on the physical boundary and the interpolation boundary.

For convenience of discussion, one quarter of the computational domain is marked and considered.

Fig. 2(a) shows the overlapping grid in physical space, while Figs. 2(b) and (c) show each component grid separately.

In this particular example, the annular grid cuts a hole in the Cartesian grid so that the latter grid has a number of

unused points marked by open circles. The other points on the component grids are classified as either discretization

points (where the PDE or boundary conditions are discretized) or interpolation points. In addition, each boundary face

of each component grid is classified as either a physical boundary (where boundary conditions are to be implemented),

a periodic boundary or an interpolation boundary; one or more lines of ghost points are created for each component

grid to aid in the application of boundary conditions.

Solution values at interpolation points of a grid GB are determined by interpolation from the donor points on another

grid GP. The donor points on grid GP are required to be either discretization points or interpolation points.

Interpolation is performed in parameter space (unit-square coordinates). For each interpolation point on grid GB,
Interpolation points for annular grid and primary grid

Unused points

ghost points for annular grid and primary grid

periodic boundary

interpolation boundary 

(a)

(b) (c)

GP

GB

physical boundary

Fig. 2. Illustration of overlapping grid system and grid information exchange.
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its parameter space coordinates on grid GP may be found using the inverse mapping from primary Cartesian

coordinates. In parameter space, quadratic interpolation of second-order accuracy is used.

For a time-dependent grid system for the moving boundary problem, the moving object is treated artificially as a

solid body and the grid points within the moving object are marked and excluded from the calculations at each time

step, obviating the need for mesh regeneration.

3.2. Discretization

Let Vi and Pi denote the discrete approximations to u and p so that

Vi � uðxiÞ;Pi � pðxiÞ. (3)

Here V ¼ (V1i, V2i) and i ¼ ði1; i2Þ is a multi-index. After discretizing in space the equations are of the form

d

dt
Vi þ ðVi � rhÞVi þ rhPi � nDhVi � fðxi; tÞ ¼ 0, (4a)

DhPi þ
X

m
rhVm;i �Dm;hVi � Cd;irh � Vi � rh � fðxi; tÞ ¼ 0, (4b)

where the divergence damping coefficient, Cd,i is defined below. The subscript h denotes a second-order centered

difference approximation

Dm;h �
q

qxm

; rh ¼ ðD1;h;D2;hÞ; Dh �
X

m

q2

qx2
m

. (5)

3.3. Divergence damping

The divergence damping term,Cd;irh � Vi, appears in the pressure equation, Eq. (4b). In simplified terms, the

coefficient Cd is taken proportional to the inverse of the time step, Cd�1/Dt. In practice it is found that Cd�n/Dx2 can

achieve better results. Detailed information about divergence damping can be found in Henshaw (2003).

3.4. Artificial diffusion

Henshaw (2003) gives the implementation of the second-order artificial diffusion shown as follows:

d2;i ¼ ðad21þ ad22jrhVij1Þ
Xnd

m¼1

DmþDm�Vi. (6)

Typical choices for the constants are ad21 ¼ 1 and ad22 ¼ 0.5. Here jrhVij1 is the magnitude of the velocity gradient

and Dmþ and Dm� are the forward and backward difference operators in direction m respectively, and nd ¼ 2 in the

present study.

jrhVij1 ¼ n�2d

Xnd

m¼1

Xnd

n¼1
jDm;hVnij, (7a)

D1þVi ¼ Vi1þ1 � Vi, (7b)

D1�Vi ¼ Vi � Vi1�1, (7c)

D2þVi ¼ Vi2þ1 � Vi, (7d)

D2�Vi ¼ Vi � Vi2�1, (7e)

This form of the artificial diffusion is based on a theoretical result of Henshaw et al. (1989). The artificial diffusion is

added to the momentum equations

d

dt
Vi þ ðVi � rhÞVi þ rhPi � nDhVi � f ðxi; tÞ � d2;i ¼ 0, (8)

which does not affect the pressure equation.
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4. Results and discussion

4.1. Validation

Flow past a pair of side-by-side identical circular cylinders is simulated by the present numerical algorithm and

compared with the numerical results of Jester and Kallinderis (2003) and the experimental data of Chen (1987). The

diameter of the two circular cylinders D is 0.1m. The computational domain (scaled with respect to the characteristic

length D) is 20� 10. The two circular cylinders are located at (6,4) and (6,6), respectively. Velocity fluctuations at the

location P, (7,5) is measured (Fig. 3(a)). Uniform velocity profile Uo ¼ 3m=s is imposed at the inflow boundary. The

Reynolds number is 1000 in the present calculation.

Fig. 3(b) shows the velocity field around the cylinder pair. Two distinct vortex streets are coupled symmetrically,

i.e. vortices are alternatively shed on the gap-side rather than the outside of the cylinders. The vortex streets can be

clearly seen in pressure field around the cylinders (Fig. 3(c)). This symmetric formation and shedding of vortices

observed in the present simulation agree well with the findings of Chen (1987) and Jester and Kallinderis (2003).

However, the antisymmetric vortex formation pattern as observed by Williamson (1985) could not be reproduced here.

Velocity fluctuation at the point P is shown in Fig. 3(d). Fourier analysis of the time-series velocity component v is used

to obtain the frequency f. The Strouhal number, defined as St ¼ fD/Uo, is calculated and yields a value of 0.24, which is

comparable to the value of 0.26 obtained by Jester and Kallinderis (2003) for the coupled vortex streets.
Fig. 3. Flow around a pair of identical circular cylinders: (a) computational domain; (b) velocity field around the cylinder pair; (c)

pressure field around the cylinder pair; (d) velocity fluctuation at the monitoring point.
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4.2. Street canyons with moving objects

Simulations were conducted for street canyons with two sets of objects, either circular or rectangular in shape with

diameter or width equal to D. The Reynolds number based on the maximum inflow velocity Uo at symmetric line and

the characteristic length D was 1.0� 104. The flow is monitored at two locations A(0,1) and B(1,1) in the moving

reference frame with its origin at the center of the moving object (Fig. 1). The velocity profile along the symmetry line

and these two monitoring points in the wake area were studied.
Fig. 5. An instantaneous velocity field around moving circular cylinder and its surroundings.
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Fig. 4. Computational mesh for the circular cylinders at different time instants.
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4.2.1. Circular objects

Circular objects with diameter D ¼ 0:2m were used to simulate moving and stationary vehicles. The computation

domain (scaled with respect to the characteristic length D) was 15 units in spanwise and 25 units in the streamwise

direction. The moving circular object was initially located at (7.5, 20) in the domain and moved downwards along the

symmetrical axis (against the wind) with a constant velocity (Fig. 4). The overlapping grid system contained 91� 151

Cartesian mesh for the rectangular background and nine 33� 6 nodes for the body-fitted component grid around each

circular object. The interpolation boundary condition was used at the outer boundary of component grids. Three

different scenarios were considered—one moving cylinder, two moving cylinders with separation g ¼ 2:5, and two
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moving cylinders with separation g ¼ 5. Two different velocities, U ¼ �0:5 and �1, of the moving object were adopted.

The negative sign indicates that the object is moving against the wind direction, which is assumed to be the positive

y-axis. The distance between the two columns of object array s, representing the distance between buildings, varied from

5 to 9 for each scenario.

The computational mesh at three instantaneous time steps is shown in Fig. 4. It should be noted that the mesh is not

generated in each time step, but only interpolation between the overlapped regions is required, resulting in reduced

CPU time. An instantaneous velocity field around the moving circular object is shown in Fig. 5. Velocity profiles at

w ¼ 0:5, where w is the distance away from the stagnation point of moving cylinder, are shown in Fig. 6. It can be seen

that the velocity right behind the moving object maintains a constant value despite the variation in s, while the velocity

at the edge of the wake varies with s. It indicates that the flow velocity in the wake of the moving object is affected by its

surrounding arrangement while the velocity in regions close to the moving object, e.g. at the monitoring point A, is

determined by the velocity of the moving object. Fig. 7 summarizes the results for the velocity at the monitoring point B

under six different scenarios. Based on the present simulation results, the flow velocity in the wake of the moving objects
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Fig. 8. Computational mesh for the rounded-rectangular cylinders at different time instants.

Fig. 9. Instantaneous velocity field around rounded-rectangular cylinders.
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increases greatly when sp6, and reaches a fairly constant value when s46. Velocity in the wake increases with the speed

of the moving object. As a consequence, emissions from the moving objects have more momentum to transport. For the

case of two moving objects, increasing separation results in higher velocity in the wake. This is due to the fact that the

incident flow for the second moving object is in the wake of the object ahead.
4.2.2. Rectangular objects

Eight rounded-rectangular objects with width 1D ( ¼ 0.2m) and length 3D were arranged in a 2� 4 array

in a computational domain, which is 15 wide and 25 long in nondimensional units. A smaller rounded-rectangular

object, which is 0.4D wide and 1D long, was used to represent the moving vehicle (Fig. 8). The overlapping grid

system included one 91� 151 background grid and nine 33� 6 component grids around each rounded-rectangular

object. Interpolation boundary condition was used at the outer boundary of component grids. The centerline

of the moving rounded-rectangular object moved along the symmetry axis at a constant velocity. Similar to the

first set, moving velocity of the object is set as U ¼ �1. The canyon width, i.e., the distance between the two

columns of fixed objects array, s, varies from 3 to 9. Velocity profiles along the symmetry line for each simulation

are investigated.

The computational mesh at three different time steps is shown in Fig. 8. An instantaneous velocity field around the

rectangular object is shown in Fig. 9. Velocity profiles at w ¼ 0:5 are analyzed using the same method as in group one.

It is found that the velocity right behind the moving object maintains a constant value despite different s values, while

the velocity at the edge of the wake varies with the s values.

Fig. 10 summarizes the velocity at the monitoring point B under the three different scenarios. Comparing with the

simulations in group one, similar results can be found in this group. The flow velocity in the wake of the moving object

increases with the separation between the two rounded-rectangular columns when 3psp6, and reaches a fairly

constant value when s46. It is noted that the magnitude of the velocity in the wake of the moving rounded-rectangular

cylinder is lower than that of the circular cylinder case. The blunt shape of the moving cylinder may be the cause of this

phenomenon. Velocity in the wake increases when the speed of the moving cylinder becomes higher. When two moving

cylinders are considered, increasing the separation will result in a higher velocity in the wake, which is similar to the

results for the circular objects case. The velocity will be recovered when the distance to the moving object is increased.

The centerline velocity profiles in the wake of the moving cylinders with different spaces s are plotted, as shown in

Fig. 11. The velocity in the recirculation region decreases exponentially as the distance from the moving object

increases, till zero velocity is experienced, where the downstream distance is 2 units away from the moving vehicle,

which indicates wake extension in the streamwise direction. It is interesting to see that the wake extensions almost keep

constant despite of different s values. For the flow velocity downstream of the recirculation region, which means the

downstream distance to the moving cylinder is larger than 2 units, different behaviors at different s values are found.

For s ¼ 3:0, the velocity reaches a constant value and is about 10% of the free-stream velocity due to the constraints of

surrounding objects. For s ¼ 3:5, velocity in the far wake along the symmetric line is about 50% of the free-stream flow.
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For sX6, the flow velocity along the symmetric line in the far-wake of the moving objects increases exponentially with

increasing downstream distance and approaches the free-stream velocity when the distance is 14 downstream of the

moving objects. It should be noted that the sudden change in velocity along the symmetry line is caused by the

discontinuity in the placement of surrounding objects. These findings are consistent with the previous theoretical study

of Eskridge and Hunt (1979).
5. Conclusions

A numerical method involving an overlapping grid procedure was implemented for simulating street canyon

flow-fields with moving objects. The method was first verified with the case of flow past a pair of circular cylinders.

Both the computed flow pattern and Strouhal number agreed well with the results in the literature. The numerical

method was then applied to simulate flows around moving objects in street canyons with a Reynolds number of 104.

The present study focused on the horizontal flow around moving objects with different distances to the surrounding

objects. The understanding of the relationship between the street canyon width and the flow field, and eventually the

pollutant concentration due to the vehicular emissions is important to city planners, from the point of view of

environmentally friendly design. It is observed that in the near-wake (recirculation region) of the moving object,

the absolute value of velocity increases exponentially with distance away from the moving object and vanishes

at the near-wake edge (wake stagnation point). For a given velocity of the moving object, the linear streamwise extent of

the near-wake remains constant for values of the canyon width, s, (scaled with respect to the width of the moving

object) less than 6. However, the velocity at the symmetric line in the far-wake (downstream of the recirculation region)

is found to be a function of the canyon width. For a narrow street canyon, for example s ¼ 3, the average far-wake

velocity is about 10% of the free-stream velocity, and for s ¼ 3:5, it is about 50% of the free-stream velocity; for sX6, it

increases exponentially with downstream distance away from the moving object. Simulations showed that away

from the wake symmetry line the velocity increases with increasing s from 3.0 to 6.0 and reaches a fairly constant

value for s46.

The effectiveness of the overlapping grid procedure for simulating the flow field of a street canyon with moving

objects has been demonstrated. Although the assumption of a two-dimensional laminar flow is not realistic at this

Reynolds number as both three-dimensional effects and turbulence are significant, the present study can give a good

insight of some basic physical phenomena present in real applications, as pointed out by Mittal et al. (1997) who also

performed numerical simulation of laminar flows at Re ¼ 1000. Furthermore, it provides the first building block for the

construction of an effective and efficient predictive methodology for the complex and more realistic configurations of

street canyons.



ARTICLE IN PRESS
J.Y. Xia et al. / Journal of Fluids and Structures 22 (2006) 315–326326
Acknowledgments

The first and second authors wish to acknowledge the Hong Kong Research Grant Council for supporting the project

(HKU 7196/03E).
References

Ahmad, K., Khare, M., Chaudhry, K.K., 2002. Model vehicle movement system in wind tunnels for exhaust dispersion studies under

various urban street configurations. Journal of Wind Engineering and Industrial Aerodynamics 90, 1051–1064.

Baker, C.J., 2001. Flow and dispersion in ground vehicle wakes. Journal of Fluids and Structures 15, 1031–1060.

Beaton, J.L., Ranzieri, A.J., Shirley, E.C., Skog, J.B., 1972. Mathematical approach to estimating highway impact on air quality.

Federal Highway Administration Report No. FHWA-RD-72-36, Washington, DC, USA.

Chen, S.S., 1987. Flow-induced Vibration of Circular Cylindrical Structures. Hemisphere, Washington.

Eskridge, R.E., Hunt, J.C.R., 1979. Highway modeling part 1. Prediction of velocity and turbulence fields in the wake of vehicles.

Journal of Applied Meteorology 18, 387–400.

Eskridge, R.E., Thompson, R.S., 1982. Experimental and theoretical study of the wake of a block-shaped vehicle in a shear-free

boundary flow. Atmospheric Environment 16, 2821–2836.

Henshaw, W.D., 1994. A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids. Journal

of Computational Physics 113, 13–25.

Henshaw, W.D., 2003. OverBlownINS: The Incompressible Navier–Stokes Solver in OverBlown. http://www.llnl.gov/casc/Overture.

Henshaw, W.D., Kreiss, H.O., Reyna, L., 1989. On the smallest scale for the incompressible Navier–Stokes equations. Theoretical and

Computational Fluid Dynamics 1, 65–95.

Jester, W., Kallinderis, Y., 2003. Numerical study of incompressible flow about fixed cylinder pairs. Journal of Fluids and Structures

17, 561–577.

Liu, C.H., Leung, D.Y.C., Barth, M.C., 2005. On the prediction of air and pollutant exchange rates in street canyons of different

aspect ratios using large-eddy simulation. Atmospheric Environment 39, 1567–1574.

Mittal, S., Kumar, V., Raghuvanshi, A., 1997. Unsteady incompressible flows past two cylinders in tandem and staggered

arrangements. International Journal for Numerical Methods in Fluids 25, 1315–1344.

Theodoridis, G., Moussiopoulos, N., 2000. Influence of building density and roof shape on the wind and dispersion characteristics in

an urban area: a numerical study. Environmental Monitoring and Assessment 65, 407–415.

Vardoulakis, S., Fisher, B.E.A., Pericleous, K., Flesca, N.G., 2003. Modelling air quality in street canyons: a review. Atmospheric

Environment 37, 155–182.

Williamson, C.H.K., 1985. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics 159, 1–18.

Xia, J.Y., Leung, D.Y.C., 2001a. Numerical study on flow over buildings in street canyon. Journal of Environmental Engineering 127,

369–376.

Xia, J.Y., Leung, D.Y.C., 2001b. Pollutant dispersion in urban street canopies. Atmospheric Environment 35, 2033–2043.

Xia, J.Y., Leung, D.Y.C., 2001c. A concentration correction scheme for Lagrangian particle model and its application in street canyon

air dispersion modelling. Atmospheric Environment 35, 5779–5788.

Zimmerman, J.R., Thompson, R.S., 1975. User’s Guide for HIWAY, a highway air pollution model. EPA-650/4-74-008.

http://www.llnl.gov/casc/Overture

	Numerical simulations of flow-field interactions between moving and stationary objects in idealized street �canyon settings
	Introduction
	Computational model and solution technique
	Computational model
	Boundary conditions

	Solution technique
	The overlapping grid
	Discretization
	Divergence damping
	Artificial diffusion

	Results and discussion
	Validation
	Street canyons with moving objects
	Circular objects
	Rectangular objects


	Conclusions
	Acknowledgments
	References


